

Open Source Conference Albania 2016, Tirana

Robert Scheck

RPM packaging after
your first

RPM package

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Robert Scheck

Fedora Package Maintainer and Provenpackager

Fedora Ambassador and Ambassador Mentor

Supporting various Fedora SIGs here and there

Open Source Contributor and Software Developer

Mail: robert@fedoraproject.org
Web: https://fedoraproject.org/wiki/RobertScheck

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

RPM in a nutshell

RPM = RPM Package Manager

Spec file is for RPM what a Makefile is for „make“

Naming: <name>-<version>-<release>.<arch>.rpm

Some examples:
bash-4.3.42-4.fc24.i686.rpm
fedora-release-24-0.17.noarch.rpm

Source: bash-4.3.42-4.fc24.src.rpm

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Basic knowledge

Install RPM development tools and run:
dnf install rpmdevtools

rpmdev-setuptree

A new empty skeleton can be achieved by:

 rpmdev-newspec <name>

RPM package building is started usually using:

 rpmbuild -ba <name>.spec

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Before starting

Build your packages never as „root“ user

 If a Makefile or the software doesn't behave
 during the compiling as you've expected, you
 maybe could damage your whole system!

 Think about a sandbox system:
 https://fedoraproject.org/wiki/Projects/Mock

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Spec file sections

 Meta informationen: Name, description, …

 %prep: Extract sources, apply patches

 %build: Compile the source code

 %install: Installation into BuildRoot

 %clean: Clean up

 %files: List of files and directories

 %changelog: List of changes of the package

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Macros

 Macros are simple text substitutions

 Some macros take parameters

 Macros allow generic spec files

 But: Partially dependent on Linux distribution

 Macro name and value of the macro

 Format: %<macro> or %{<macro>}

 http://www.rpm.org/wiki/PackagerDocs/Macros

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Macro examples

%build
%configure --disable-static
make %{?_smp_mflags}

%install
make DESTDIR=$RPM_BUILD_ROOT install

%post -p /sbin/ldconfig

%postun -p /sbin/ldconfig

%files
%doc AUTHORS NEWS README
%{_bindir}/idn2

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Macro usage

 Show configuration: rpm --showrc

 Search: rpm --showrc | grep <macro>

 Expand macro:
 $ rpm --eval %{_datadir}
 /usr/share

 $ rpm --eval %prep
 %prep
 LANG=C
 export LANG
 unset DISPLAY

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Common directory macros

 %{_prefix} = /usr

 %{_exec_prefix} = %{_prefix}

 %{_bindir} = %{_exec_prefix}/bin

 %{_sbindir} = %{_exec_prefix}/sbin

 %{_lib} = /lib or /lib64

 %{_libdir} = %{_exec_prefix}%{_lib}

 %{_datadir} = %{_prefix}/share

 %{_sysconfdir} = /etc

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Common directory macros

 %{_libexecdir} = %{_exec_prefix}/libexec

 %{_infodir} = /usr/share/info

 %{_mandir} = /usr/share/man

 %{_localstatedir} = /var

 %{_sharedstatedir} = /var/lib

 %{_unitdir} = /usr/lib/systemd/system

 %{_includedir} = %{_prefix}/include

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Patches

 Used to adapt/change the source code

 Upstream tarball should not be changed

 Patches can be upstream or downstream

 Applied using macro %patch in %prep section

 Order is set in spec file

 <pkgname>-<pkgversion>-<name>.patch

 Avoid „fuzzy patches“

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Patch example

Name: moon-buggy
Version: 1.0.51
…
Source: http://seehuhn.de/media/programs/ ↩
 %{name}-%{version}.tar.gz
Patch0: moon-buggy-1.0.51-pause.patch
…

%prep
%setup -q
%patch0 -p1 -b .pause

…

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Scriptlets

 Execution of commands or scripts

 „Hooks“ during (un)installation and update

 %pre(un): before (un)installation

 %post(un): after (un)installation

 Since RPM 4.4:

 %pretrans: At the beginning of the transaction

 %posttrans: In the end of the transaction

 %trigger: Interaction between
 different RPM packages

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Scriptlet examples

%post
/sbin/ldconfig
/sbin/install-info ↩
 %{_infodir}/%{name}.info.gz %{_infodir}/dir || :

%preun
if [$1 = 0]; then
 /sbin/install-info --delete ↩
 %{_infodir}/%{name}.info.gz %{_infodir}/dir || :
fi

%postun -p /sbin/ldconfig

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Subpackages

 Separate RPM packages in one or multiple
 subpackages to save disk space or to avoid
 unwanted dependencies

%package pgsql
Summary: A PostgreSQL database module for PHP
Requires: php-pdo%{?_isa} = %{version}-%{release}
BuildRequires: krb5-devel, openssl-devel, ↩
 postgresql-devel

%description pgsql
Back-end support in PHP for PostgreSQL

 BuildArch: noarch possible
 for subpackage since RPM 4.6

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Hardware architectures

BuildArch: Build the package only for given
CPU/hardware architecture, e.g. noarch

ExcludeArch: Exclude package during build
from the given CPU/hardware architectures

ExcludeArch: sparc64 %{alpha}

…

%ifnarch s390 s390x
BuildRequires: libraw1394-devel
%endif

 Use %if(n)arch macros

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Different distribution versions

 Goal: Use same spec file for different versions
 of a Linux distribution

 Figure out smallest/lowest common base

 Optional tags/macros such as BuildRoot, %clean

 Use macros for different behaviour/paths

 Distribution specific macros or own hacks

 BuildRequires eventually for header files

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Different Linux distributions

 Goal: Use the same spec file for different Linux
 distributions

 Use distribution specific macros for packages
 at Requires and BuildRequires

 Replace as much paths as possible by generic
 or RPM internal/default macros

 BuildRequires eventually for header files

 Worst case: RPM 3.0.x compatible spec file

 Avoid implicit, favor explicit

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Generic RPM packages

 Goal: Same binary RPM package for all Linux
 distributions and CPU architectures

 Not really spirit and purpose of RPM

 Static linking and/or noarch usage if unavoidable

 RPM package should always be build per
 Linux distribution, version and architecture

 Real life: Wrong or missing dependencies in
 RPM packages of e.g. Adobe, Dell, F-Secure,
 HPE, Skype, TeamViewer, ...

 32 bit RPM on 64 bit system

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Debug information

 Compiled source code (socalled object files)
 contain symbols by default

 Symbols are often removed by strip during
 make oder make install

 Disable in spec file if needed

 RPM removes unneeded symbols and moves
 them into -debuginfo subpackage RPM

 Saves usually a lot of bandwidth and disk space

 Install only afterwards if needed
for debugging using e.g. GDB

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Reproducible results

 Local system has maybe an optional library
 installed which another system hasn't installed

 Use sandbox/build system such as „mock“

 Chroot environment with minimal installation

 Automagic installation of RPM packages based on
BuildRequires in the spec file

 RPM package itself is build within the chroot

 One system for different Linux
 distributions/architectures

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Advantages due to mock

 Example: Mock on CentOS 7 with 64 Bit

 RPMs for CentOS 5, 6 and 7, Fedora 22, 23, 24
and Rawhide for 32 and 64 bit each

 Theoretically extendable for each distribution; dnf/
yum compatible repository required → createrepo

 RPM & mock are optimized for native building

 Cross compiling might cause new/further issues

 Use emulator (QEMU, Linaro, Hercules)

 Koji is built on top of mock and
 offers e.g. RPC and monitoring

OSCAL 2016 – RPM packaging after your first package – Robert Scheck

Get your package into Fedora

Go to the Fedora website and create an account:

 https://admin.fedoraproject.org/accounts/user/new

Follow the howtos and guidelines to get it into:

 https://fedoraproject.org/wiki/PackageMaintainers/Join

Actively maintain your package and care about!

Questions?

Thank you!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26

